Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris)

Abstract: Bumble bees are important pollinators whose populations have declined over recent years, raising widespread concern. One conspicuous threat to bumble bees is their unintended exposure to trace residues of systemic neonicotinoid pesticides, such as imidacloprid, which are ingested when bees forage on the nectar and pollen of treated crops. However, the demographic consequences for bumble bees of exposure to dietary neonicotinoids have yet to be fully established. To determine whether environmentally realistic levels of imidacloprid are capable of making a demographic impact on bumble bees, we exposed queenless microcolonies of worker bumble bees, Bombus terrestris, to a range of dosages of dietary imidacloprid between zero and 125 μg/L and examined the effects on ovary development and fecundity. Microcolonies showed a dose-dependent decline in fecundity, with environmentally realistic dosages in the range of 1 μg/L capable of reducing brood production by one third. In contrast, ovary development was unimpaired by dietary imidacloprid except at the highest dosage. Imidacloprid reduced feeding on both syrup and pollen but, after controlling statistically for dosage, microcolonies that consumed more syrup and pollen produced more brood. We therefore speculate that the detrimental effects of imidacloprid on fecundity emerge principally from nutrient limitation imposed by the failure of individuals to feed. Our findings raise concern about the impact of neonicotinoids on wild bumble bee populations. However, we recognize that to fully evaluate impacts on wild colonies it will be necessary to establish the effect of dietary neonicotinoids on the fecundity of bumble bee queens.

Ian Laycock, Kate M. Lenthall, Andrew T. Barratt and James E. Cresswell, in press, Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris), Ecotoxicology.

See also this news item:
Pesticides hit bumblebee reproduction